Post-Newtonian effects on Lagrange’s equilateral triangular solution for the three-body problem
نویسندگان
چکیده
منابع مشابه
the algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولEffects of radiation on stability of triangular equilibrium points in elliptic restricted three body problem
This paper deals with the stability of triangular Lagrangian points in the elliptical restricted three body problem, under the effect of radiation pressure stemming from the more massive primary on the infinitesimal. We adopted a set of rotating pulsating axes centered at the centre of mass of the two primaries Sun and Jupiter. We have exploited method of averaging used by Grebenikov, throughou...
متن کاملPost-Newtonian N -body simulations
We report on the first fully consistent conventional cluster simulation which includes terms up to post Newtonian in the potential of the massive body. Numerical problems for treating extremely energetic binaries orbiting a single massive object are circumvented by employing the special “wheel-spoke” regularization method of Zare (1974) which has not been used in large-N simulations before. Ide...
متن کاملSolution of a Relativistic Three Body Problem
Starting from a relativistic s-wave scattering length model for the two particle input we construct an unambiguous, unitary solution of the relativistic three body problem given only the masses ma,mb,mc and the masses of the two body bound states μbc, μca, μab. Submitted to Few Body Systems: Tjon Festschrift Issue; revised ms. resubmitted October, 1997 Work supported by Department of Energy con...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review D
سال: 2011
ISSN: 1550-7998,1550-2368
DOI: 10.1103/physrevd.83.084026